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Abstract: Over 100 years ago, Jacques and Pierre Curie experimentally confirmed the
presence of the piezoelectric effect in quartz, Rochelle salts and tourmaline single crystals. Within
the last 50 years, a number of ceramic and polymer materials with non-symmetrical crystal
structures have also been found to exhibit the piezoelectric effect. The discovery of strong
piezoelecticity in these materials has led to their commercialization and has been a major factor
in the development of a wide range of applications. This paper begins with a review of the
fundamental properties of piezoelectric materials. A description of the important types of
piezoelectric materials and their characteristics are presented next, followed by discussions of
selected applications, with additional applications listed in tabular format.
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4. APPLICATIONS OF PIEZOELECTRIC MATERIALS

Piezoelectric materials have been used in hundreds of applications which span a wide range
of products in the consumer, industrial, medical, aerospace and defence sectors, An exhaustive
treatment of all of the applications is well beyond the scope of this work; however, a
representative cross section of the more popular applications will be discussed in this section. The
applications discussed in this chapter will be classified in terms of the direct and converse
piezoelectric effects. For clarity, the findamental aspects are discussed in detail with a
representative example. Extensive application lists are presented in tabular form.

4.1 The Direct Piezoelectric Effect

As described in earlier sections, when a piezoelectric material is subjected to a mechanical
stress a charge is generated across the material. The ability of a material to generate a charge or
electric field when subjected to a stress is measured by the piezoelectric voltage coefficient (g).
In accordance with the IEEE Standards on Piezoelectricity [5], the piezoelectric voltage
coeflicient relates the stress (T) to the generated electric field (E), under open-circuit conditions,
as follows:

s—ZLp

a7 “

From this equation, it can be seen that a large variation in electric field with a change in stress will
result in a large value of g. Furthermore, since the electric field generated across the ceramic is
dependent on the polarization of the material,

P=D-¢ E, 44

a large g coefficient requires a large change in electric field or polarization. This implies that
materials with large saturation polarizations will make better sensor materials.

In sensor materials it is desirable to have a response which varies linearly with changes in
the measured quantity. As a result, the piezoelectric elements utilized in sensors generally operate
in the linear region, such that the voltage generated across the element varies linearly with the
magnitude of the mechanical stress. For a piezoelectric disc of a given thickness (t), the voltage
(V) generated across the electrode disc when subjected to a stress (T) would be:

=gtT. 45)

Hence, for a given piezoelectric material the amount of voltage produced by the ceramic subjected
1o a stress can be increased by increasing the thickness of the ceramic disc [105].

Table 8 summarizes a number of applications which utilize the direct piezoelectric effect.
Some of the more popular applications of the direct piezoelectric effect will be discussed in the
following paragraphs.
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4.1.1 Pressure and Force Sensors

A number of sensor applications rely on the direct piezoelectric effect to measure pressure
or force. Depending on the nature of the pressure or force being measured, the piezoelectric
element may take on different shapes in order to take advantage of the different modes of
operation available in the element. Generally, the thickness, radial and shear modes of a
piezoelectric element are utilized in piezoelectric based devices.

For large dynamic pressure changes, the more durable ceramic disc or washer is favoured.
These ceramics can sustain larger forces than most of the other ceramic shapes. These materials
tend to be used in applications that are subject to harsh mechanical environments which involve
large quasi-static loading or impact loading. Although these ceramics can be used to measure
quasi-static loads, they are more accurate in the measurement of dynamic forces or loads since
they are far less susceptible to dielectric losses in such cases. The ability of piezoelectric elements
to measure changes in pressure or force has been utilized in a number of different sensor
applications, including accelerometers, hydrophones and microphones.

4.1.2 Accelerometers

Piezoelectric accelerometers rely on the piezoelectric effect to generate an electrical output
which is proportional to an applied acceleration. The amount of charge generated across a
piezoelectric material is proportional to the force produced by an inertial mass (F =ma). In other
words, the total amount of accumulated charge is proportional to the applied force, which is
proportional fo the acceleration of the inertial mass.

A variety of mechanical configurations are commercially available. Fig. 28 illustrates the
shear, compression and flexural beam accelerometers, which are defined by the nature in which
the inertial force of an accelerated mass acts upon the piezoelectric material [106]. Shear mode
accelerometers bond or sandwich the sensing ceramic between a centre post and inertial mass. A
compression ring or stud applies a preload force required to create a rigid linear structure. Under
the acceleration, the mass causes a shear stress to be applied to the sensing ceramic. The shear
geometry lends itself to miniaturization. Compression mode accelerometers are also a widely
utilized design due to their simple structure, high rigidity and availability. In the compression
accelerometer the piezoelectric element is placed between a inertial mass and rigid mounting base.
When the sensor is accelerated, the inertial mass increases or decreases the amount of force acting
upon the active element and results in a proportional electrical output. The larger the inertial
mass, the greater the stress and, hence, the greater the output. Due to their inherently stiff
structure, the compression designs offer high resonance frequencies and a broad, accurate
frequency response range. This design is generally very rugged and can withstand high shock
levels. Piezoelectric ceramics in flexural mode accelerometers are mounted such that when the
sensor is accelerated, bending moments are generated in the ceramic element. These accelerometer
designs offer a low profile, are light weight, and have excellent thermal stability. Insensivity to
transverse motion is also an inherent feature of this design. Generally, flexural beam designs are

well suited for low frequency, low acceleration level applications as may be encountered during
structural testing,
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4,1.3 Hydrophones

In underwater applications, the most efficient method of measuring acoustic pressure
waves utilizes the piezoelectric hydrophone. Although the basic operating principle of the
hydrophone is the direct piezoelectric effect, different piezoelectric element geometries are utilized
in order to take advantage of different operational modes. For example, a simple directional
hydrophone consists of a piezoelectric element disc encased in a polymer as illustrated in Fig. 29.
Since the radial and thickness modes of a piezoelectric disc produce opposite charges when
subjected to the same stress, it is often beneficial to clamp or isolate one of these modes in order
to increase the sensitivity of the hydrophone.

Omnidirectional hydrophones operating at low frequencies utilize a piezoelectric tube
element. The piezoelectric tube can operate in either the thickness or radial modes with the
electrodes on the inner and outer surfaces of the tube. A typical hydrophone assembly is shown
in Fig. 30. The hydrophone consists of four radially-poled cylindrical piezoelectric tube elements
encased in a polymer [107,67]. The inside and outside electrodes, which are on the curved
surfaces of the tubes, are connected in parallel. The tubes are separated physically and electrically
by spacers and end caps are fitted to the ends of the assembly. The useful frequency bandwidth
for end capped cylindrical elements usually depends on the largest dimensions of the cylinder and
the properties of the end caps [108]. This type of hydrophone is often used in underwater
communication, survey and surveillance applications.

4.1.4 Microphones

Microphones are similar to hydrophones in that both of these devices detect acoustic
waves. However, a microphone differs from a hydrophone in that the acoustic waves travel 1n air
as opposed to liquid. Typically, a microphone consists of a low mass diaphragm which is
mechanically coupled to a piezoelectric element mounted in a cavity, as shown in Fig. 31. The
vibrations of the diaphragm induce larger voltages in the piezoelectric element than would be
possible in an uncoupled piezoelectric element [105,106],

4.1.5 Igniters

Igniters are often used to ignite combustible gases in lighters, stoves and barbeques. The
piezoelectric based igniters utilize the direct piezoelectric effect to generate a voltage across two
electrodes separated by a gap. It has already been established that if a piezoelectric material is
subjected to an applied force, a charge is generated across the ceramic. When the electrodes of
the ceramic are connected to a pair of secondary electrodes separated by a small gap and the
voltage produced across the ceramic is large enough, it can produce arcing across the second
electrode gap. Piezoelectric igniters are classified by the type of force used to generate the
charge. An impact igniter uses a spring loaded hammer to dynamically induce the generation of
charge across a piezoelectric cylinder, while the squeeze igniter applies a quasi-static load to the
piezoelectric cylinder using a lever system [105]. Although the impact igniter, shown in Fig. 32,
tends to be more compact than the squeeze igniters, the squeeze igniters have a large probability
of ignition due to the multiple sparks which are generated during loading,
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1. coaxial cable 5. ceramic element

2. cable gland 6. ceramic washer
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4. top end cap 8. polyurethane boot

Figure 30: BM024 hydrophone assembly schematic.
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4.2 The Converse Piezoelectric Effect

The converse effect occurs when a piezoelectric material becomes strained when placed
in an electric field. Under constant stress conditions, the general equation for the piezoelectric
charge coefficient (d) can be expressed as the change in the strain (S) of the piezoelectric material
as a function of the applied electric field (E):

oS 7
d=22
ok | )

The piezoelectric charge coefficient (d) relates to the piezoelectric voltage coefficient (g)
as follows;

d=eg 47

where € is the permittivity [5). Generally, a high g requires the material to have a high saturation
polarization (P,); while a high d has the additional requirement of having a high permittivity. As
a result, a good actuator material does not always make a good sensor and vice versa.

For a piezoelectric disc with electrodes on the faces of the disc and with a polarization
direction along the axis of the disc, the change in thickness (At) for an applied voltage (V) is
expressed, as follows;

At=d33 V (48)

while the change in diameter (AD) for a given applied voltage is expressed, as follows:

D
AD=dy, V= 49)

These changes in dimension can be utilized in a2 number of actuator and transducer
applications, some of which are summarized in Table 9. Only the more popular of these
applications will be presented in the following paragraphs.

4.2.1 Actuators

The evolution of the piezoelectric actuators from the disc and tube elements to the more
elaborate flextensional devices, which mechanically couple different modes of a plezoelectric
element in order to enhance the displacement properties, arose out of the necessity to overcome
the displacement limitations of the conventional piezoelectric element. However, the larger
displacements achieved by flextensional devices come at the expense of lower operational
frequencies and lower force generative capabilities as shown in Table 10.
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Piezoelectric discs and washers are used in applications requiring small displacements and
high generative force. However, some applications require actuators that are capable of
generating large displacements while maintaining their abilities to generate large forces. For
example, piezoelectric stack actuators are used in a number of flextensional underwater transdycer
designs. These transducers utilize the larger displacement capabilities of the stacks and the
mechanical leverage between the active stacks and the passive components, to radiate large-
amplitude sound waves in the presence of a significant water mass. Such stack-based transducers
have been utilized as switches for optical fibre communication systems and as actuators in
deformable mirrors.

In applications that require less force, but higher displacements, the piezoelectric tube can
be utilized as a relatively inexpensive actuator, For example, Scanning Tunnelling (STM) and
Atomic Force (AFM) Microscopes utilize piezoelectric tubes to achieve sufficiently large
displacements while maintaining the necessary resolution to characterize the electronic surfaces
of materials to atomic resolutions. The extensional displacement (AL) along the length (L) of a
piezoelectric tube for a given applied voltage (V) is as follows [67];

LV

w

(50

where w is the thickness of the wall of the tube. By segmenting the tube, one can also induce
lateral motion in the tube. Similar technologies are being used in lithography, scribing and other
applications [67].

Bimorph actuators are available in a number of different configurations, as shown in Fig.
33. Bimorph actuators consist of two thin piezoelectric plates bonded together [105, 106, 67].
When a voltage is applied across the bimorph, bending moments and forces are induced in the
mechanically coupled system. When using a cantilever-type bimorph, the free end of the bimorph
will become displaced with the application of a voltage. The displacement for a bimorph is given
by:

3d, E,L*
T ah

o} (51)

where L is the length of the bimorph and h is the thickness of one piezoelectric plate [109].
Bimorph actuators are generally used in applications requiring large displacements and relatively

low forces, such as optical beam deflectors, printer hammers, loudspeakers, and video tape
recording heads.

Recent literature describes a new type of actuator called the Reduced and Internaily Biased
Oxide Wafer (RAINBOW) [110]. Like the bimorph actuator, RAINBOW actuators utilize
mechanical coupling in order to generate large displacements. As shown in Fig. 34, the
RAINBOW actuator consists of a piezoelectric layer and a chemically reduced layer, which is
created at high temperatures. The bilayered system becomes thermally stressed to create 2 dome
shaped distortion in a disc shaped sample upon cooling from the reduction temperatures.
Relatively large changes in the dome height of the RAINBOW can be induced with the application
of a voltage which modifies the thermally stressed bilayer couple. The RAINBOW has been

uti.ljzed iIl Inicmmlmn.q variahle farnc mirrare cnoalrars and enlnea acefialoan . 11__at_ ..
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The moonie, shown in Fig. 35, is a miniature flextensional device that consists of a
piezoelectric disc sandwiched between two small, crescent shaped metallic end caps [111]. These
devices use the radial mode of the piezoelectric disc to produce strains in the crescent shaped
metallic end caps which are perpendicular to the axis of the piezoelectric disc.

A number of piezoelectric motors with novel designs have also added to the dynamic range
of piezoelectric actuators. The piezoelectric inchworm motor, for example, operates by using a
number of piezoelectric elements to create a “grip and release” type action which generates motion
[112]. Another type of piezoelectric motor consists of a thin washer piezoelectric element, an
elastic body and a moving body, i.e. a standing wave motor. The most popular type of standing
wave motor is the progressive wave or travelling wave motor, In this motor the elastic body is
bonded to the piezoelectric washer which induces vertical and transverse waves in the elastic body,
creating the travelling standing wave. This travelling wave moves the metallic rotor using the
frictional force of the piezoelectric-elastic body (the stator) [113,114]. These piezoelectric motors
have been utilized in robotic and precision machine tools, camera lens motors and windshield
wiper motors.

4.2.2 Underwater Transducers

In underwater transducers, the piezoelectric elements are generally either encased in a
housing with a polymer, similar to the hydrophone geometry presented in Fig. 29, or sandwiched
between metallic end pieces [105,106]. In projectors (transmitters) consisting of a single
piezoelectric element encapsulated in a polymer, it is important that the maximum amount of
acoustic energy is transmitted from the transducer. For optimum transmission of the acoustic
energy from the transducer, it is important that the thickness of the polymer layer between the
piezoelectric element and the water be equal to a quarter wavelength. The quarter wavelength
thickness is calculated for the polymer using the speed of sound (v,) in the polymer and the
resonance frequency (F,) of the piezoelectric disc, as follows:

v,
QuarterWaveIengthIhrcfmess——ii _F (52)

r

where the piezoelectric disc is manufactured to achieve the desired operating frequency for a
specific resonance mode. In order to achieve a clean resonance, avoiding cross coupled modes
and/or overtones, the ceramic disc element in the transducer should have an aspect ratio greater
than 2.5 [106]. In the sandwich type transducer, the piezoelectric ceramic disc is clamped between
two metallic end pieces. Since the ceramic is in a state of compression, the transducer element is
less susceptible to damage due to tensile forces acting on the ceramic. In this configuration, the
resonance frequency of the transducer is greatly effected by the property of the metallic end pieces,
as opposed to being dominated by the piezoelectric ceramic. Fig. 36 illustrates the piston
longitudinal vibrator, one of the most common commercial underwater transducers. Table 9
summarizes a number of popular underwater transducer applications.

4.2.3 Air Transducers

Air transducers convert electrical power to and from acoustic waves which travel in air.
Unlike underwater transducers, in order to create audible sound waves of discernible amphtude

tha air trancdninar emof vanarafa rarsab lascae dinoalannomamdn O - _%_ o _ 3 ___.__ 1_
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produce the forces required by underwater transducers, low force bender elements, such as the
bimorph, can be utilized. These flextensional benders can be found in many transducer
applications, such as beepers, audio speakers and tone transducers [105].

4.2.4 Electrical Wave Filters

As described earlier, the impedance properties of a piezoelectric ceramic vary as a function
of frequency. Although a piezoelectric material is capacitive for most frequencies, these materials
exhibited ohmic behaviour between the minimum impedance at the resonance frequency and
maximum impedance at the antiresonance frequency. It is this property that is exploited in
electrical filters. One of the important parameters of an electric filter is its bandwidth. This
bandwidth spans the range of frequencies that pass through the filter with minimum attenuation.

Piezoelectric resonators made in the shape of thin discs or plates can be used in low and
high frequency filter applications. In the low frequency regime, between 100 and 450 kHz, the
planar mode of the ceramic disc or plate is utilized; while in high frequency applications that
require frequencies between 5 and 15 MHZ, the thickness mode of the piezoelectric disc or plate
can be utilized (Fig. 37). However, the thickness mode is more susceptible to overtones that
manifests themselves as a series of sharp resonance frequency peaks near the thickness mode
resonance peak. This series of resonance peaks makes it impractical for these ceramics to be used
in high frequency filters. However, by decreasing the diameter of the electrodes and increasing
the thickness of the electrodes, the frequency of the fundamental thickness mode of the
piezoelectric element in the electrode region will be lower than in the outer region of the
piezoelectric element. As a result, the outer region of the disc will damp, or ‘trap’ the overtone
modes excited in the electrode region and a relatively clean resonance peak can be achieved [115].

4.2.5 Ink Jet Priniers

In some ink jet printers [116], the impulse ink jet (or Ink-on-Demand) is produced using
a cylindrical transducer which is tightly bound to the outer surface of a cylindrical glass nozzle
with an orifice of approximately 2-3 mils, as illustrated in Fig. 38. The piezoelectric tube
transducer generates & pressure wave in the ink that accelerates the ink through the glass nozzle
[117, 118]. If'the impulse pressure wave is large enough to exceed the surface tension of the ink,
an ink droplet will form at the orifice. As many as 32 of these systems would be incorporated into
one single print mechanism to give resolutions of 240 dpi at a frequency of 4.8 kHz and a print
speed of 200 cps in letter quality mode and 400 cps in near letter quality mode [119]. Ultimately,
the operating frequencies of these systems are limited to approximately 10 kHz by the capillary
action during refilling from a large ink cartridge [116].

4.3  Applications That Utilize the Direct and Converse Piezoelectric Effects

4.3.1 Sonar

_ A number of applications utilize both the direct and converse piezoelectric effects to
produce and detect acoustical signals. Sonar, an acronym for sound navigation and ranging, is
one of these applications. Essentially, an echo ranging sonar system transmits acoustic signals into
the water and receives the reflected echoes from a target of interest (submarine, seamount, ocean
floor, etc.) at a later time. The signals are generated by active transducers called broiectors and
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the echoes are received by passive transducers called hydrophones. By measuring the elapsed time
between signal emission and echo reception, the distance or range to the target can be determined.
Directional receiver systems can also determine target bearing. The fundamental process for a
typical echo ranging sonar system is illustrated in Fig, 39.

Since the echoes are embedded in noise upon reception, the hydrophone output is
amplified and processed to enhance the echoes and reject the noise. Noise can be man-made or
natural and is generated by such things as shipping, industrial activity, rain, waves, breaking ice,
organisims, and seismic activity. Finally, the echoes are displayed to an operator in a variety of
formats, depending on the purpose of the particular type of sonar system. Typical uses of sonar
are listed in Table 11, along with applications like nondestructive testing and diagnostic imaging
which uses similar technologies.

4.3.2 Delay Line Transducers

In electronic systems, it is often necessary to delay the progress of electrical signals for
times on the order of several milliseconds. Electromechanical transducers can be used in devices
that delay signals by transmitting into a suitably dimensioned delay medium as bulk acoustic
waves. These waves propagate through the delay medium and are received by a second transducer
that converts the acoustic waves back into electrical signals [105, 106]. Space requirements are
reduced in some devices by reflecting the acoustic energy within the intermediate material to a
second transducer, as illustrated in Fig. 40. Since it is important that the delayed signal closely
resemble the original signal, the piezoelectric transducers should be linear over a sufficient
bandwidth and the delay medium should be low loss and thermally stable. Some applications of
acoustic delay lines are given in Table 11.

4.3.3 Surface Acoustic Wave Devices

The surface acoustic wave (SAW) devices are based on the principle that an acoustic wave
can be confined to a thin surface layer of a material. These surface waves, or Rayleigh waves, are
aresult of the combination of longitudinal and shear motion governed by the stress free condition
of the surface. When such a wave is generated in a piezoelectric material, an electric field which
varies with the amplitude of the surface wave is induced parallel to the surface of the piezoelectric
material. By placing an interdigited electrode of width ‘a’ and electrode gaps of width ‘b’ on the
surface of a piezoelectric material, as shown in Fig. 41, surface waves of wavelength (A, = 2(at+b))
can be detected, modified and/or transmitted along the surface. The lower operational frequencies
are limited to about 30 MHz due to the size limitations on the SAW electrode; while upper
frequencies are limited to several GHz by electrode fabrication techniques. The surface wave
concept gives the user versatility in that the surface wave can be measured or modified as it
Propagates across the surface [120]. These devices have been used in delay lines, bandpass filters
and matched filters for applications in the vhf and uhf regimes.

4.3.4 Smart Structure Applications

Smart structures are being utilized at an increasing rate in a number of different sectors of
industry. The term smart structure (or intelligent) refers to a structure which has the intrinsic or
extrinsic capabilities to repeatedly respond in a useful manner to an external stimulus. The
external stimulus usually involves a change in the environmental conditions in the vicinity nf the
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smart structure, such as a change in light, temperature or pressure. The response of a smart
structure may take the form of a change in colour, shape, conductivity or magnetization [121]. The
following paragraphs discuss piezoelectric-based smart structures and their detection of and
response to external mechanical stimulj.

4.3.4.1 Active Shape Control

Shape control of flexible structures have been used to improve the performance of
aerodynamic and hydrodynamic lifting surfaces performance, to reduce drag on submersible
components, and to correct for errors in mirrors, antenna and reflectors operating in the optical,
radar, and IR specira. Shape control of a relatively thin structure is achieved by sensing
deformations using either surface mounted or embedded actuators attached to a thin beam or panel
structure [122, 123]. Asillustrated in Fig. 42, bending forces are produced by generating tension
and compression on opposite sides of a thin cantilever beam. The degree to which a flexible
structure will actually bend (or strain) is dependent on the dimensions and physical properties of
the actuator and structural materials [122]. In this case the actuators do not directly bear the load
that the structure must maintain. Another type of shape control involves placing the actuator in
serles with the loads or forces being controlled in order to generate a structural strain. Generally,
these high strength single element or stack actuators operate linearly using just tensional and
compressive forces to correct the structure deformations produced by exposure to large external
forces.

4.3.4.2 Active Vibration Control

The same principle of inducing strains in shape control applications is used in active
vibration damping applications. In fact, in some cases, vibration suppression is necessary in order
to achieve the precision movements necessary for static shape control. In active vibration control
piezoelectric elements are utilized to both detect vibrations that are disrupting the structure and
to cancel out these vibrations by inducing counter vibrations into the structure. According to the
principle of superposition, if the disruptive vibrations and the counter vibrations are of opposite
phase and equal amplitude, then the two waves will cancel. This principle is utilized in a number
of smart structure applications. For example, the Toyota piezo TEMS (Toyota Electronic
Modulated Suspension), shown in Fig. 43, was developed to improve the handling and stability
of the automobile for passenger comfort. The TEMS is based on a road stability sensor and a
shock adjustor [124, 125). The road surface sensor consists of a five-layers of piezoelectric
ceramic mounted on the piston rod of the shock absorber. When a bump in the road is
encountered, the sensor produces a voltage proportional to the resulting applied stress. This
valtage is electronically monitored by the control system which then supplies a signal to a 88-layer
piezoelectric stack actuator which counters the vibration produced by the bump. The actuator
stack can produce displacements as large as 50 um. These displacements are then hydraulically
amplified displacements as large as 2 mm.

4343 Active Noise Control

Active Noise Control (ANC) works on the basic principle of destructive interference,
where the undesirable sound wave is countered with a sound wave of equal amplitude, but shifted
by 180 degrees. The result is that the sound waves cancel each other out and the undesirable
sound is eliminated. In order to produce a cancellation wave, an ANC system uses the following
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basic components: a microphone, a loudspeaker and feedback electronics. These devices have
already found applications in noise cancellation headsets, transformer quieting systems, and
interior noise reduction in automobiles and aircraft [126]. Ore example of an ANC system utilizes
a piezoelectric ceramic-based transducer array to reduce the omnidirectional low frequency hum
produced by large power transformers. In this transformer quieting system, composite panels
composed of surface mounted piezoelectric transducers and sensors were attached to the
transformer tank, as shown in Fig, 44, Using active control, these smart panels were found to
reduce the transformer noise by as much as 30 dB for the tonal noise levels and 10 - 20 dB for
frequencies between 120 and 240 Hz [127, 128].
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