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ABSTRACT 
 
 

     This study presents an active vibration control technique applied to a smart beam. 
The smart beam consists of an aluminum beam modeled in cantilevered configuration 
with surface bonded piezoelectric (PZT) patches. The study uses ANSYS (v5.6) 
package program. The study first investigates the effects of element selection in finite 
element modeling. The effects of the piezoelectric patches on the resonance 
frequencies of the smart structure are also shown. The developed finite element model 
is reduced to a state-space form suitable for a controller design. The work then, by 
using this reduced model, presents the design of an active vibration controller which 
effectively suppresses the vibrations of the smart beam due to its first two flexural 
modes. The vibration suppression is achieved by the application of H∞ controllers. 
The effectiveness of the technique in the modeling of the uncertainties is also 
presented.  
 

INTRODUCTION 
 
 

    Utilization of  discrete piezoelectric actuators have been shown to be a viable 
concept for vibration suppression in various works. Crawley and de Luis [1] proposed 
an analytical solution for a static case including various actuator geometries. They 
stated that discrete piezoelectric actuators could be considered in vibration 
suppression of some modes of vibration of flexible structures. Kalaycioglu and Misra 
[2] used a dynamic modeling technique for vibration suppression of plate structures by 
using PZT patches. The technique incorporates geometrical and mechanical properties 
of the actuator with the structures on which they mounted. Using the time-delay 
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techniques, Kalaycioglu, Giray and Asmer [3] showed the effectiveness of the model 
on the active control of space structures. In one of the recent studies Suleman 
proposed the effectiveness of the piezoceramic sensor and actuators on the 
suppression of vibrations on an experimental wing due to gust loading [4]. 
  
 
The finite element method was shown to be a very effective tool for the analysis of 
the smart structures. The method offers fully coupled thermo-mechanical-electrical 
analysis of the structures, which makes simulation of highly interactive response of 
the system [5,6]. This allows the prediction of the reciprocal relations between the 
sensors and actuators and makes the development of the closed loop controller for 
active vibration control possible. 
 
This study presents an active vibration control technique applied to a smart beam. The 
finite element model of the smart beam, which is composed of an aluminum 
cantilever beam and active PZT patches,  is achieved by using ANSYS (v5.6) package 
program.  Using this finite element model an H∞ controller is designed which 
effectively suppresses the vibrations of the smart beam due to its first two modes. The 
effectiveness of the technique in the modeling of the uncertainties is also presented.  
 
 
FINITE ELEMENT MODELING OF THE SMART BEAM 
 
     In the modeling and analysis of piezoelectric crystals the typical finite elements 
used are the solid elements, whereas in the analysis of thin plates, usually shell 
elements are utilized.  The use of elements possessing different degrees of freedoms 
in the same model requires coupling of the consistent degrees of freedoms at the 
contact surfaces where these elements interface. Although the application of the 
coupling strategies guaranties the appropriate transfer of the nodal forces between the 
active and passive portions at the interface, the nodal moments corresponding to the 
nodal rotations do not transfer [7]. Hence, the first part of the study gives the effects 
of  element selection  in finite element modeling. 
 
For this reason, a case given  in reference [5]  is considered. The smart beam was a 
25×300×0.635 mm aluminum beam modeled in cantilevered configuration with single 
25×63.5×0.19 mm PZT actuator placed on one surface of the beam closed to the 
clamped end. 
 
In the current study, that smart beam was modeled again by considering two 
approaches. In the first approach the solid elements (SOLID5) were used for the 
modeling of the active portion (piezoelectric patches) and compatible solid elements 
(SOLID45) were used for the modeling of the passive portion (aluminum beam). This 
is called as ‘hybrid solid-solid model’. Then the model given in the reference [5] is 
taken into the consideration and the passive structure was modeled with shell 
elements (SHELL99 ) whereas the piezoelectric patches were still solid elements. 
This second model was denoted as ‘hybrid shell-solid model’. The specimen was then 
theoretically subjected to a piezoelectric actuation voltage of 400V. The mid-tip 
responses of the smart beam were theoretically calculated and the results were 
tabulated in Table 1 together with the  experimental result given in reference [5]. 
Table 1 shows that the hybrid  solid-solid model yields results which are  closer to the 
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experimental values. The differences between shell-solid and solid-solid hybrid 
models may be attributed to the improper modeling of the contribution of the element 
stiffness matrices to the global stiffness matrix of the beam. Those stem from the 
incompatibilities existing between the element types. Therefore, it can be concluded 
that in the use of the commercial code ANSYS, the hybrid models consisting of solid-
solid elements do allow more precise modeling of the beams of this geometry. 
 
Table 1. The comparison of the effects of the element type selection on the response 
 Theoretical HYBRID 

SOLID-SOLID 
Theoretical HYBRID 
 SHELL-SOLID  

Experimental 
Result [5] 

Deflection(mm) 10.687 12.558 10 
 
Figure 1 gives the geometry, dimensions and the finite element model of the smart 
beam used in this study.  8 (20×25×0.61 mm) Sensortech BM532 type actuators are 
glued in bimorph configuration on a 507×51×2 mm aluminum beam. The smart beam 
is modeled with hybrid solid-solid approach.  

 
 
 
 
The Influence of the Piezoelectric Patches on the Natural Frequencies 
 
This section shows the effects of the eight piezoelectric patches on the natural 
frequencies of the aluminum beam. Table 2 compares the resonance frequencies of 
the passive aluminum and the smart beams. The presence of the actuators, as 
expected, shifts the natural frequencies to higher frequencies. This stiffening effects 
are more pronounced at low frequencies. 
 
Table 2. The influence of the actuator  patches on the resonance frequencies 
 

Frequency(Hz) Passive beam Smart Beam % Increase
f1 6.679 7.503 %12.33 
f2 41.858 44.918 %7.31 
f3 117.219 121.06 %3.28 

 
 

PZT:25×20×0.61mm; type: BM532 

Clamped End 

Aluminum beam: E=69GPa,ν=0.33 
507×51×2 mm

(a) 

Figure 1. The geometry and the finite element model of the smart beam used in the study 
(a)Top view 
(b) Side view 

(b) 
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THE STATE SPACE REPRESENTATION OF THE SMART BEAM 
 
     The aim in the system modeling is to obtain the mathematical description of the 
plant suitable for the design of the control system. The system modeling technique 
includes the determination of the state space representation of the system. The model 
of the system can also be found via system identification [8,11]. The model obtained 
through system identification can also be used to tune the accuracy of the model 
derived from finite element method [8]. 

 
The Formulation of The State-Space Representation of the Smart Beam 
 
 
The finite element method can effectively be used in the modeling of smart structures. 
In this study the nodal coordinates are selected in the modeling. The governing 
differential equation of motion for the smart beam can be represented as [9,10] 
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here, defining n as the degrees of freedom per node, M, C and K gives n×n mass 
damping and stiffness matrices respectively. The vector {q} represents the 

generalized vector of displacements, {
.
q } gives the generalized vector of velocities, 

{
..
q } defines the vector of accelerations and{P} is the voltage to generalized force 

transformation vector. 
 
 In the modeling Rayleigh damping model is used.  Rayleigh defined proportional 
damping as a dissipative situation where viscous damping matrix C is directly 
proportional to mass, stiffness or both as [7,10], 
[ ] [ ] [ ]KMC β+γ=

         (2) 

Here, γ and β defines mass and stiffness material loss factors respectively. When the 
stiffness damping is used (γ=0) the modal loss factor ζr  takes the form 

β
ω
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2

r
r           (3) 

In order to investigate the effectiveness of the controller at high frequencies very 
small material loss factor is considered in the theoretical calculations. In the study the 
material loss factor β is taken to be 1×10-4. 
  
In order to obtain a state space representation of the smart beam, the differential 
equation of motion described by equation (1) is premultiplied with M-1 (for 
nonsingular mass matrix) 
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Furthermore, selection of the state vector x, as }
.
qq{ T leads to the formation of the 

specific form given in equation (5) 
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where I defines n×n identity matrix. In this case, the output of the system can be 
written in the form of equation (6) 
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Here, Coq and Cov give the displacement and velocity output vectors respectively. The 
forms of equation (5-6) allows the representation of the governing differential 
equation of motion given in equation (1), to be cast into the state space form as [9,10], 
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The comparison of the equations (5-7) gives the form to be used in the controller 
design of the system consisting of r actuators and s sensors. Here, u is the r×1 input 
vector of the actuation voltage, A is 2n×2n system matrix, B 2n×r input matrix and Co 
s×2n output matrix. 

 
 

Model Reduction 
 
In the finite element modeling, the structure is modeled to retain large number of 
degrees of freedoms for better accuracy. In active vibration control of flexible 
structures, however the use of smaller order model has computational advantages. 
Therefore, it is necessary to apply a model reduction technique to the state space 
representation. The reduced order system model extraction techniques solve the 
problem of the complexity by keeping the essential properties of the full model only 
[10-12]. The frequency range is selected to span first three frequencies of the smart 
beam in order to find the reduced order model of the system 
 
During the theoretical calculations the 20th order system model obtained from the 
finite element model is reduced to the 6th order using a model reduction technique 
based on balance realization [12]. Figure 2 shows the comparison of the 6th and the 
20th order system models 
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Figure 2. The Comparison of the 20th and 6th Order Models 
 
 

H∞ CONTROLLER DESIGN 
 
     This section gives the application of the H∞ controller on the system model of the 
smart structure. The goal of the controller design is to increase the modal damping 
ratio within the frequency range of interest, therefore reducing the settling time. The 
effectiveness of the piezoelectric actuators in the open and closed loop controllers is 
shown in the literature [13-15]. In the H∞ controller design aim is to minimize the H∞ 
norm of the transfer function describing the relation between the inputs and the 
outputs of a multi input multi output system. 
 
The H∞ norm of the multi input multi output system M is defined as the supremum 
value of the singular values of the transfer function matrix calculated on the jω axis of 
the complex plane [11,13,15]. 
 

))j(M(supM ωσ=∞         (9) 
Here, j defines the complex number and )j( ωσ is the largest singular value of the 
matrix  M(jω). 
 
Closed loop architecture of the controller is shown in Figure 3. In this figure, P(s) 
defines the nominal transfer function of the system, K is the transfer function of the 
controller, w, v represents the noise signals and z, e symbolize the error signals. In this 
architecture, K controller processes the outputs and feeds back to the system. The H∞ 
control problem consists of determining K such that the H∞ norm of the transfer 
function from w, v to z, e is minimized and the closed loop system is stable. 
 

 The 20th order system 
 The  6th order system 
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Because of the measurement errors, the mismatches between the mathematical model 
and the time dependence of the parameters representing the system, no model can 
represent the real system exactly. In H∞ controller design however, these 
uncertainities and errors can be included in the modeling systematically [11,12]. In 
this technique, the uncertainties are assumed to influence the linear time invariant 
system P(s) by means of another system ∆(s) as shown in Figure 4 In this 
configuration, despite the presence of the uncertainties ∆, the controller K minimizes 
the ratio of the signal energies e to v.  
 

 
Figure 5 shows the formulation of the closed loop control problem in H∞ framework. 
In this figure, SYSbeam  defines the nominal smart beam model, δ is a complex 
number such that 1〈δ  and Wadd defines the amplitude of the weight of additive 
uncertainty weight included into the system model. 
 
The additive uncertainty weight Wadd is included to account for the unmodeled or 
truncated high frequency modes. The interaction of the nominal transfer function 
SYSbeam, with ∆ which is the multiplication of Wadd by δ defines the system model of 
the smart beam including the uncertainties. In the modeling, Wper gives the 
performance weight applied to the displacement measurements made on the mid-tip 
of the smart beam. 
 
In the study, Wd the weight added to disturbance, is taken to be 1 indicating that the 
order of the disturbance acting on the system and the input signal produced by the 
controller is the same. Furthermore, Wnoise, representing the noise to signal ratio is 
selected to be 0.01 
 
The goal in the controller design is to minimize displacement signal in the low 
frequency range, while not  exciting the unmodeled high frequency modes [14]. 
Figure 6 gives the comparison of the frequency response of the beam and Wadd .It can 
be seen from the figure that, as frequency increases the uncertainties increase 
indicating better system model at low frequencies. The comparison of Wper and the 
frequency response of the smart beam are shown in Figure 7.  The application of this 
weight results in the minimization of the displacement at low frequencies while 
making minimal changes at high frequencies. Wact represents the weight applied to the 
actuator signals in order to limit the actuator authority. The weight is chosen as 0.01. 
 
 
 

∆(s) 

P(s) v

w 

u y

z 

K(s) 

P(s) v 
w 

u y 
K(s) 

e e

z 

Figure 3. The closed loop Architecture of the 
 H∞ controller 

Figure 4. The Modeling of the 
Uncertainties 
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Figure 5. The Control Problem Formulation 
 

The application of standard solution techniques to this problem leads to the 
determination of a 11th order controller. Figure 8 shows bode plot for this controller. 
The controller is then, reduced to the 4th order .The application of the controller to the 
system model results in 1/30 2.21  reduction at the amplitude of the first and second 
frequencies respectively. The comparison of the open and closed loop frequency 
response of the system are shown in Figure 9. 
 
In order to test the robustness of the controller the structural singular value (µ) of the 
system is calculated across the frequency range of interest. For a given uncertainty 
structure ∆ and closed loop system M, µ is defined as 

{ }0)M-det(I ,  :)(min
1)M(

=∆∆∈∆∆σ
=µ∆     (10) 
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Figure 6. The Comparison of the 
 Wadd and the Frequency Response 
of the Smart Beam 

Figure 7. The Comparison of the 
 Wper and the Frequency Response 
 of the Smart Beam
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0)M(hen singular t )M-(I makes  no If =µ∆∆∈∆ ∆  
 
A closed loop system will have robust performance (i.e. performance specification is 
satisfied by the closed-loop system in the presence of defined uncertainities) if µ less 
than 1 within the frequency range of interest. Figure 10 shows that the closed loop 
system designed for the smart beam has robust performance property [14,15] 
 

 
 
 
 

 
Figure 10. The structural Singular value (µ) of the Closed Loop System 
 
 

DISCUSSION 
 
 

      The effects of the finite element type selection on the static response of the smart 
beam were shown. A finite element based modeling technique for the determination 
of the system model of the smart beam was presented. Based on this model, an H∞ 
controller was designed which effectively suppresses the vibrations of the smart beam 
due to its first two modes. The suitability of the H∞ design technique in the modeling 
of uncertainties and in evaluating the robust performance of the system was 
demonstrated. 

             Open loop  
 Closed loop 

Figure 9.The comparison of the 
Closed  and Open Loop Responses of 
the Smart Beam 

Figure 8. The 11th order controller 
Designed in the Study 
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